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CLUSTER RECOGNITION ALGORITHMS FOR BATTLEFIELD SIMULATION

DESCRIPTION OF PROBLEM

The target acquisition fire support model (TAFSM) is a large scale, automated, artillery

combat simulation model. This model has been developed over several years to include

increasingly large and realistic battlefield situations and still retain its efficiency. TAFSM models

two competing forces. Battlefield assets such as weapons, communications systems, and

detection systems are assigned to each force. Assets are arranged on a flat, two-dimensional

battlefield, and a battle is simulated with each force following a prescribed strategy. The

battlefield events are all stochastic, so each has a probability of success and failure, and multiple

runs are used to analyze a given situation. TAFSM runs in roughly ten times real time, which

means that 10 hours of battlefield simulation can be run in 1 hour of computer time. This
impressive efficiency is necessary for research results of weapons systems being developed to

proceed in a timely fashion.

To process more complicated battlefield scenarios within the necessary time constraints,

units on the battlefield must be grouped into clusters, which will then be treated as a single entity

in further processing. Units on the battlefield represent the battlefield assets (such as vehicles,

weapons, or platoons). This strategy will only improve the system performance if the clustering

algorithm is both efficient and reliable. A clustering algorithm that can work like a forward

observer, grouping sensor data from objects into perceptually meaningful clusters, is useful in

this situation. As an example, objects that are spatially proximate and moving in the same

direction should be clustered.

Clusters fall into three categories: circular, linear, and on line. Circular clusters are formed

from a group of congregated vehicles. Linear clusters are formed from a convoy headed down a

road. On-line clusters are formed as the units spread across the front line of a battlefield. These
three types of clusters represent the most strategically important arrangements of assets on the

battlefield. Figure 1 shows the three different types of clusters. Note that circular clusters are

often stationary and are therefore shown without reference to a direction of movement.

The purpose of the present research is to design and implement clustering algorithms to

detect circular, linear, and on-line clusters from sensor data that are modeled in the TAFSM

simulation. Input to the clustering algorithms includes the position, velocity, and direction of

movement of units on the battlefield. A set of clustering parameters that describes the desired

clusters is also given. Output from the algorithm will be a set of clusters of units satisfying the
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criterion prescribed by the input parameters. For the clustering algorithms to be successful, it is

necessary that they be able to run in just a few seconds, even on a large data set. In addition, the

clusters produced must be perceptually meaningful. Figure 2 shows a battlefield with units

displayed as dots. The linear clusters produced from this battlefield are shown in Figure 3. The

boxes in Figure 3 represent the clusters.

• •
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Figure 1. Three different types of clusters.
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Figure 2. A sample input to the clustering algorithm.
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Figure 3. A sample output showing linear and on-line clusters.

Before any clustering algorithm is implemented, it must be established that the data

should be clustered. This is necessary because clustering algorithms will generate clusters

independent of the existence of clusters in the data. In this application, it is clear that clusters are

appropriate since convoys, the front lines of the battlefield, and resupply areas are all examples

of clusters that should be anticipated on physical grounds. There are many areas in the sample

data sets where the data have very little coherent structure. In most cases, low structural

coherence results in low clustering.

The organization of this report is as follows. The next section describes the clustering

algorithm designed for linear and on-line clusters. The third section describes the clustering

algorithm for circular clusters. The final section summarizes the contributions of this work,

draws conclusions, and gives a table of parameters. The appendix shows all 59 data sets,
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complete with the initial results, intermediate results, and final results for the linear and on-line

clusterings. Results for the circular clustering algorithm are shown for some data sets.

LINEAR AND ON-LINE CLUSTERS

Clustering of linear and on-line clusters is performed by the same algorithm because both

types of clusters have the same structure. In both cases, subsets of data that have similar

velocities and directions are grouped into linear structures. For a cluster to be either linear or on

line, it must look like a rectangle with one pair of sides substantially longer than the other pair of

sides. The direction of the longer pair of sides will be referred to as the cluster direction. Linear

clusters can be distinguished from on-line clusters by the direction of movement of the units, as

compared to the cluster direction. Linear clusters move in the cluster direction. On-line clusters

move perpendicular to the cluster direction.

Some clustering algorithms are designed specifically for linear structures. An example of

one such algorithm is the Hough transform (Hough, 1962). A Hough space is a discretized

parameter space. Each bin in the Hough space represents a small range of parameter values.

Points in the input image are placed into every bin in the Hough space with consistent

parameters. For linear objects, the Hough space is two-dimensional and can be thought of as

representing the slope and intercept of a line, although a different parameterization with better

properties is commonly used. Since a single point could be on many different lines, the point is

placed into many different bins. After all points have been placed into bins, the bin with the

maximum number of points is selected as a linear structure. In this way, the set of parameters

that represents the maximum number of points in the image is selected as the set of the best line.

The Hough transform is able to select long, straight lines in the presence of many types of

noise. A difficulty with the Hough transform is that global structures are detected instead of

local ones. For this reason, Hough spaces are inappropriate for clustering in TAFSM since local

linearity is what is sought. Hough transforms have been generalized to arbitrary parametric

shapes (Ballard, 1981). As an example, a circle has three parameters: the two coordinates of the

location of the center of the circle and the radius. A Hough space could be used to detect circular

clusters, but the size of the parameter space is large. A survey of Hough transform techniques,

including both the benefits and difficulties, is available in a report by Illingworth and Kittler

(1988). Difficulties with the Hough space, particularly in the presence of noise have been

discussed (Grimson & Huttenlocher, 1988).
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More general clustering algorithms, which are often based on graph theory, fall into two

categories: partitional algorithms and hierarchical algorithms. A partitional clustering algorithm is

one that starts with all the points grouped into a single cluster and then repetitively divides

cluster(s). A partitional clustering algorithm was proposed by Zahn (1971). Zaln suggests that

the minimum spanning tree (MST) of the data points be created. Any edge in the MST that is

longer than a threshold parameter is then removed, leaving connected components of the tree as

clusters. A difficulty of this method is developing a method for selecting break points that will

respect the linearity of the desired clusters without examining a multiplicity of subsets around

every point.

The second type of general clustering algorithm is the hierarchical. Hierarchical clustering

algorithms begin with all the points representing one-element clusters. The clusters are then

hierarchically assembled into larger clusters, based on some joining criterion. One such clustering

algorithm was proposed by Tuceryan (1986). In this method, only clusters that are neighbors

according to the Voronoi tesselation definition of neighborhoods are considered forjoining. A

difficulty with this algorithm is that the Voronoi tesselation, which is O(n log n), must be found

for the n points.

Another set of hierarchical clustering algorithms tries to join small clusters, based on a

distance metric. Clusters are joined by ascending distance metric. A variety of metrics has been

used, including Euclidean and Manhattan metrics. Both the single-link and complete-link

algorithms fall into this classification. These methods form the basis for the hierarchical

algorithm designed for the linear and on-line clusters and are further discussed in the next

subsection.

This section is divided into two subsections. The first discusses the classic single-link

and complete-link clustering algorithms and why they are inadequate for this task. The second

describes a hierarchical clustering algorithm derived from the single-link clustering algorithm,

which performs both linear and on-line clustering.

Single- and Complete-Link Clustering

Single-link and complete-link clustering algorithms are both based on the following idea:

clusters that are closer together should be grouped first. Both the single-link and complete-link

clustering algorithms are special cases of a general set of algorithms called sequential,
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agglomerative, hierarchical, nonoverlapping (SAHN) algorithms. The general framework for a

SAHN algorithm consists of the following steps (Jain & Dubes, 1988):

1. Begin with the disjoint clustering having level L(O) = 0 and sequence number m = 0.

2. Find the least dissimilar pair of clusters in the current clustering, for example,

pair { (r), (s)} according to some distance metric d.

d[(r),(s)J=min{d[(i),(j)}]

in which the minimum is taken over all pairs of clusters in the current clustering.

3. Increment the sequence number m by 1. Merge clusters (r) and (s) into a single

cluster to form the next clustering m. Set the level of the clustering to

L(m)=d[(r),(s)]

4. Update the proximity matrix D by deleting the rows and columns

corresponding to clusters (r) and (s) and adding a row and column corresponding to the newly

formed cluster. The proximity between the new cluster denoted (rs) and old cluster (k) is

defmed as follows.

For the single-link method,

d[(k), (r, s)] = max {d[(k), (r)], d[(k), (s)]}

For the complete-link method,

d[(k), (r, s)] = max (d[(k), (r)], d[(k), (s)]}

5. If all objects are in one cluster, stop. Otherwise, go to Step 2.

The distinction between the complete-link algorithm and the single-link algorithm is that

the complete-link algorithm is conservative. Clusters will not be joined until all points in both

clusters are proximate. The single-link algorithm is more daring, joining clusters when only a pair

of points within the clusters becomes close. Complete-link clusters are joined when the distances

between all points in both clusters are minimal among pairs of clusters. In graph theoretic

notation, this means that all the edges in a complete subgraph of the pair of cluster points must

be of minimal distance among the pairs of clusters. Single-link clusters are joined when the

distance between a single pair of points in both clusters is minimal. This means that one of the

8



edges in the subgraph of cluster points is of minimal distance among pairs of clusters. Since we

are not looking for clusters that are compact in the linear and on-line case, complete-link

clustering is inappropriate in this application. The shortcomings of complete-link clustering for

the circular case are discussed in the section entitled Circular Clusters. Other SAHN algorithms

and the variety of distance metrics are given in Jain and Dubes (1988).

There are a number of problems using the single-link algorithm directly for clustering in

TAFSM. The first problem is that it does not explicitly allow for considerations other than

distance between points to be used in determining whether clusters should be joined. For

example, data points in a cluster must have a velocity and direction that are within a given

tolerance. This feature could be added to the clustering algorithm with little difficulty.

A second problem is that the single-link method creates a complete hierarchy of

clusterings, stopping only when all points in the data set have been joined into a single cluster.

After this cluster hierarchy is created, it can be cut at a variety of thresholds to determine the

clusters. One method for cutting is to look for a large jump in distance values (d) between levels.

A large jump in distance value means that a cluster remained unchanged for a long time. This is

one indication that the cluster might be perceptually significant. Being able to select different

thresholds from a single clustering is important in many clustering applications because there is

no physical basis for parameter selection. In TAFSM, there is a physical basis since the

parameters of the weapon systems being tested are the variables being examined during the

simulation runs. Therefore, the hierarchical clustering can be stopped when these known

parameters are exceeded. This greatly improves the efficiency of clustering. Single-link clustering

also requires that distances be calculated between all pairs of points initially. This is very

inefficient when one is handling many thousands of points, most of which are not proximate.

A final shortcoming with single-link clustering is that the usual distance metrics, Euclidean

and Manhattan, are not adequate in this application. Between linear clusters, variations in

distance along the cluster direction are expected. Variations in distance perpendicular to the

cluster direction should not be treated similarly.

Unlike the difficulties with the other clustering methods discussed, all these shortcomings

in the single-link clustering algorithm can be overcome to produce an algorithm that is better

tuned to the TAFSM simulation. Two algorithms derived from the single-link algorithm are

discussed in the next two subsections.
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Two Levels of Clustering

Defining a distance metric to use for joining clusters is difficult to do in one step. For

clusters with one or two points, it is difficult to tell whether the cluster is linear or on line. Once

a few more points in the cluster are available, this distinction can be easily made. Once a cluster

is known to be linear, for example, the parameters that are relevant to a linear cluster can be used

to better tune further clustering.

This observation motivates a two-level clustering algorithm. In the first clustering, any
data points that are sufficiently close using a Euclidean distance metric and share a common

velocity and direction of movement can be joined in ascending order of distance. This is done

without any reference to whether the clusters are linear or on line. Once sufficiently large

clusters have been created, they can be classified by type. While some clusters will still not have

enough data to classify, the vast majority of the clusters can be organized into linear and on-line

clusters. These low-level linear and on-line clusters can be clustered as two separate clustering

problems. The distance metric used is identical, but the specific parameter values may vary since
distances that would exist in a convoy traveling toward the front might differ from distances

between adjacent vehicles on the front lines.

It is necessary to create clusters in ascending order of distance rather than just grouping

any points of distance less than a threshold. When clusters are being formed, the velocity and
direction vectors need to be compatible. If points that are farther away are joined with a cluster

instead of the points that were closer, the velocity and direction may be corrupted.

The initial clustering algorithm is discussed next, including the method for classifying

clusters as either linear or on line. This is followed by a discussion of the algorithm that clusters

the clusters produced by the first clustering algorithm.

Initial Clustering

The initial clusters are created using a modification of the single-link algorithm.
The general methodology ofjoining data points or clusters that have smaller separations first,

which was used in the single-link algorithm, will be used. The Euclidean distance metric will be

used, since the initial clustering is done before clusters of sufficient size to permit classification

have been created.

1. For each pair of points i andj,
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if the distance between i andj is less than a threshold value, add (ij) to an

ordered list of pairs P.

2. Sort list P into ascending order, using the Euclidean distance for the

comparisons.

3. For each pair (ij) in the sort list D,

(a) Check to see if points i andj are already in the same cluster. If they are,

then go to the next pair of points.

(b) Check to see if the cluster that contains i and the cluster that containsj

have velocities and directions that are within a threshold value. If they do, then join these

clusters into a single cluster.

4. Create statistics that describe each cluster.

A number of methods were used to improve the efficiency of this algorithm.

Instead of calculating distances between all pairs of points i andj, we placed the points in

discretized bins. The size of the discretized bins is determined by the maximum cluster size

desired. Based on previous experimentation with clustering, Ron Laird contributed the idea that

only points in the same or eight connected neighboring bins have distances calculated, since only

points within these adjoining bins could be close enough to allow clustering. In the typical data

set, this saves an enormous amount of calculation. The size of the bins must be larger than the

radius of the small clusters.

The bins are searched in raster order. If the current bin is at location (a, b), (when

a and b are integer indices for the bin array), then only comparisons to bins at (a,b), (a+l,b),

(a,b+l), (a+l,b+l), and if b-1>0, bin (a+l,b-1), need to be made. Points that share a bin are only

included in the cluster list if the index of the first point is smaller than the index of the second.

This scheme prevents any recalculation of distances and the duplication of points in the list P.

The statistics that are used to describe each cluster are the center, a list of

elements, and the eigenvalues and eigenvectors. The eigenvalues and eigenvectors describe the

distribution of data in the cluster. The eigenvalues are ordered with the largest eigenvalue and its

corresponding eigenvector being labeled as the first, and the other eigenvalue-eigenvector pair

being labeled as the second. If the eigenvalues are approximately equal, the cluster could be
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circular. Circular clusters are sought by a different algorithm. If one eigenvalue is much larger

than the other, the cluster is elongated. The eigenvector that matches the larger eigenvalue is in

the direction of maximum variation in the cluster. The second eigenvector is perpendicular to the

first. The length and width of the cluster are calculated by finding the points that are farthest

away from the center in the direction of the first and second eigenvectors, respectively.

To determine whether a cluster is either on line or linear, the ratio of the first

eigenvalue to the second eigenvalue is compared to a threshold. If the ratio of the eigenvalues is

larger than the threshold, then the cluster can be labeled as being either on line or linear. If the

ratio of the eigenvalues is smaller than the threshold, then the cluster is labeled as being of

unknown type. To differentiate linear and on-line clusters, the direction of movement must be

compared to the cluster direction. The direction of movement is stored as an angle 0. The cluster

direction is represented by the first eigenvector. If the absolute value of the dot product of the

first eigenvector and the movement direction vector (cos 0, sin 0) is bigger than the absolute value

of the dot product of the second eigenvector and the same movement direction vector, then the

cluster has more variation in the direction parallel to the direction of movement than in the

direction perpendicular to the direction of movement. This means that the cluster is moving in

the direction of the length of the cluster, that is, it is a linear cluster. If the absolute value of the

dot product of the second eigenvector with the movement direction vector is larger than the

absolute value of the dot product of the first eigenvector with the movement direction vector,

then the movement is in a direction perpendicular to the length of the cluster. This means that

the cluster is on line.

Any cluster that cannot be classified is included on a list of unknowns. Unknown

clusters, some of which contain only a single point, are allowed to cluster with any linear or

unknown cluster. Clusters are not permitted to form hierarchically between clusters labeled as

linear and on line. The vast majority of the clusters in the data sets were linear clusters, with

only a few on-line clusters.

The appendix shows the calculation of intermediate clusters for all 59 data sets on

the page following the initial data. Although it is difficult to detect in the large data sets, only the

boxes describing the eigenvectors and eigenvalues are displayed in the initial clusterings; the data

points are not displayed. Unknown clusters are displayed with a circle. Linear clusters are

denoted with a box made of solid lines. The few on-line clusters that were found are denoted by

a dashed box. The boxes in both the linear and on-line case are graphical representations of the
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eigenvectors and the extent of the cluster. The parameters used in this algorithm, along with the

default values, are given in Table 1.

Table 1

The Parameters Used in the Initial Clustering

Default value

Threshold on maximum distance for D 8 units

Threshold on velocity differences 1.0 unit

Threshold on directional differences 0.5 radian

Threshold on ratio of eigenvalues 4

Extensive experimentation with parameter values was done, and the results are not

sensitive to small changes in parameter values. The most important parameter is the distance

threshold. If there is difficulty determining an optimal value, it is best to set this parameter at the

small end of the acceptable range since the second level of clustering will be able to join fractured
clusters but not subdivide existing clusters. A symptom of the distance threshold being too small

is that far too many clusters are labeled as unknown. The data sets given did not have any

variation in velocity, so the velocity threshold was set arbitrarily. A much smaller directional

difference threshold would have sufficed since the directions of the clusters given in the data had

very little variation.

Clustering the Initial Clusters

The algorithm for clustering the initial clusters into more perceptually significant

groupings is given here. It is similar to the initial clustering algorithm. This distance metric is not

Euclidean in this case. It is described after the algorithm.

1. For each pair of clusters of compatible types i andj,

if the distance between i andj is less than a threshold value, add (ij) to a list of

ordered pairs P. The distance metric is explained:

2. Sort list P into ascending order of the distance.
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3. For each pair (ij) in the sorted list P,

(a) Check to see if clusters i andj are already joined. If they are, then go to the

next pair of clusters in list P.

(b) Check to see if the cluster that contains i and the cluster that contains]

have velocities and directions that are within a threshold value. If they do, then tentatively join

clusters i andj into a single cluster.

(c) Create statistics that describe the new cluster. The new cluster must be

within tolerances before replacing clusters i andj with the new cluster.

The compatible cluster types are described in Table 2. Clusters of unknown type

are not permitted to join to other clusters of unknown type. This is necessary to prevent single

point clusters at large distances from coming together.

Table 2

Compatible Cluster Types

Linear Linear

On line On line

Linear Unknown

On line Unknown

The distance metric used to evaluate whether a pair of clusters should be joined

compares the distance between the cluster centers in the direction of the eigenvectors. Separate
thresholds are used for each eigenvector. For both linear and on-line clusterings, much more

tolerance is given in the direction parallel to the first eigenvector than in the second. In addition,

the length of the clusters, but not the width, was subtracted from the distance in the direction of

the first eigenvector. This is necessary since the cluster centers between two linear clusters

joined end to end could be far apart, even if the separation between the end points were small.

A distance metric in which the distances were combined using variable weights

was also used during experimentation with this algorithm. The difficulty with this second metric
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was that variation in the distance along the second eigenvector would limit the tolerance to

variation along the direction of the first eigenvector. This meant that some small gaps would not

be filled if the clusters had even a small difference in centers along the direction of the second

eigenvector. Reducing the penalty for variation in the direction of the second eigenvector

produced wide, nonlinear clusters since two linear clusters that were running in parallel directions

could then join.

As in the initial clustering algorithm, cluster end points are again put into
discretized bins to avoid having to calculate the distance between all pairs of end points. Cluster

end points were determined to be the points farthest from the cluster center in the direction of

the first eigenvector for both the linear and on-line clusters. The bins that must be compared

were previously described.

When clusters are joined, two additional parameters are examined before the

cluster is permanently accepted. First, the width of the cluster is compared to two times the

maximum possible distance parallel to the second eigenvector. This keeps linear clusters that are

proximate from joining into a single long, wide cluster.

A second test is performed to assure that joined clusters are good. An accidental

alignment occurs when two small clusters that are spatially separated are joined because they are

part of the same line. If there are intermediate points, this joining is not only acceptable but
desirable. The worst case here is when a cluster with only three points is the maximum threshold

distance parallel to the first eigenvector from a second cluster with only three points. A density

threshold comparison is done to determine if there is a sufficient number of points per unit length

in the new linear cluster. This eliminates problems with accidental alignments.

The worst case computational complexity for the algorithm is O(n2) in which n is

the number of data points. In this worst case, all n points would be clustered into a single
discretized bin so that all the paired distances would have to be calculated. This case is very

unlikely to happen in practice. Average case computational complexity was not calculated since

a meaningful statistical description of the distribution of the data is not known.

The parameters were set experimentally. Tuning the parameters will take some

experimentation when a new modality of data, such as that coming from a new sensor, is

presented. The general rules are as follow. If more clustering is desired, all the thresholds except
the density threshold should be raised. The density threshold should be lowered. If clusters that
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are too big are being created, then all thresholds should be lowered, except for the density

threshold which should be raised. The X-windows user interface provided permits a user to

enlarge a particular area to see the individual points that comprise a cluster. This can provide

valuable insight, particularly with the large data sets in which individual points are difficult or

impossible to see at a resolution that will permit viewing the entire field of view.

Jumping immediately to an extreme case of the parameters individually will often

give a quick impression of which parameter is preventing or forcing an inappropriate break or

join. As an example, if it is suspected that the directional difference may be too low, the

threshold can be set to 3600. This removes any possible effect of directions. If an inappropriate

gap is not filled with this threshold, then clearly the clustering is being limited by another

parameter or a more complex interaction between parameters and no further adjustment of this

parameter alone can improve the clustering.

The number of examples of on-line groupings was not sufficient to determine an

independent set of parameters. As a result, the values that are given in Table 3 should be treated

with suspicion. The software is written in such a way that the parameters for linear and on-line

clustering are completely independent.

Table 3

The Parameters Used in the Linear Clustering

Parameter Default value

Threshold on distance parallel to the first eigenvector 100 units

Threshold on distance parallel to the second eigenvector 8 units

Threshold on velocity differences 1.0 unit

Threshold on directional differences 0.5 radian

Threshold on density .05

Note. The on-line clustering also used these parameters.
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A visual examination of the results in the appendix shows that the linear and on-

line clustering algorithm is performing well. There are cases when the results are not perfect, for

example, when a relatively small gap between two apparently linear clusters has not been

bridged. Investigation of these cases shows that the cluster centers are displaced enough in the

direction perpendicular to the first eigenvector that the clusters cannot join. This investigation

was conducted by examining the clusters at higher resolution with respect to the data. There are

no known cases when this was caused by a directional or velocity difference. The data within the

test set have very little variation in the directional and velocity components. There are also some

cases when small clusters that are relatively far apart have been joined. If this is deemed to be

undesirable, a higher density threshold will keep these clusters from joining.

CIRCULAR CLUSTERS

The algorithm for finding circular clusters is considerably more simple than the linear and
on-line algorithm. Since circles are rotationally invariant, a simple template-matching operation

can find circular clusters. Suppose that the data set is represented as an image. Let the pixels in

the image have a value equal to the number of units that are located at a particular point.

Template matching takes a small array, called a mask, and convolves this mask with the image of

the data set. The pixel with the highest convolution value is the center of the best circular cluster.

The only parameter used is the radius of the mask.

The mask for this convolution operation is binary. A 0 position in the mask indicates

that the point corresponding to this mask is outside the region of interest. A 1 position in the
mask indicates that the point corresponding to this mask point is inside the region of interest.

Convolution is performed by setting the mask on top of the image at each position, multiplying

corresponding mask and pixel values and adding the result. The mask is essentially providing an

indicator function that determines whether the pixels in adjacent bins should be counted as

contributing to a cluster centered at this point in the image. These convolution values are stored,

and the maximum value is declared to be the best circular cluster. In the current implementation,

a list of the best k clusters, in which k is a parameter, is kept. To calculate the best k clusters,

points that are used in the first cluster must be removed from the bins before calculations are

performed for the second cluster. If this is not done, points may be in more than one cluster.

The only difficulty with template matching for this application is the time complexity. If

the data set has n points, and the size of the data image is m x m, then there are O(m2)

operations. Note that this is the best case, the worst case, and the average case time complexity.
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If specialized convolution hardware were available on the system, this algorithm could be run in

its original form very quickly. Since this hardware is not available, a more efficient version of the

algorithm is sought.

To improve the efficiency of the algorithm, the sparcity of the data set is used to

advantage. Instead of having a separate accumulator array for the convolved values, data points
will contribute to bins that are within the region of interest on the mask centered at the data

point. Accumulators will be stored in a sparse array, so that only bins that have been

incremented will need to be searched for maximal counts. With this change, the time complexity

of the algorithm is O(m2) in the worst case, in which every single bin in the entire image plane

was used (this is possible only if there is a sufficient number of points, which is not typically the

case). In the best case, all n points coincide, and the algorithm is O(n). Notice that the

computational complexity of this algorithm is better than that of the linear and on-line clustering.

This explains why this algorithm was selected instead of modifying the on-line and linear

algorithm previously described.

For a large cluster radius, the execution time of this algorithm as presently described can

be too slow. For example, if the mask represents a circle of diameter 20, the approximately 314

bins will be incremented in the neighborhood of the point. Using a sparse matrix avoids searching
thousands of empty bins, but there is a penalty in terms of overhead. To improve the efficiency

further, a mask of the same shape but with lower resolution was used. By lowering the
resolution by a factor of 4, for example, only 13 bins need to be incremented for each point. The

price for this lower resolution is that the exact location of the best cluster at the higher resolution

is not found. To restate this, the best cluster center need not have its center at the center of the

best bin.

If a more accurate position is needed, as might be true in the case of targeting artillery, a

high resolution search of the area immediately surrounding good bins could be done. This will be

much more efficient, since many points will have been removed from consideration before the

high resolution search begins. This improvement was not implemented.

The parameters used in the circular clustering are described in Table 4. The quotient of
the diameter of the mask with the resolution needs to be an odd number. This is because circles

are represented better in odd size masks than in even size masks. All the parameters in this table

can be directly found from application considerations. For example, if artillery that will destroy

anything in a 50-unit diameter is to be fired, then the cluster diameter should clearly be 50. If
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only one round can be fired, then only one cluster needs to be kept. The minimum number of

clusters desired should be requested since some recalculation must occur to obtain further

clusters. Two resolution values that meet the constraints for a 50-unit diameter are 2 and 10

units per bin. Using a resolution of 2, or a mask size of 25, would produce more accurate target

recognition. The resolution of 10, which corresponds to a mask size of 5, would run much more

quickly.

Table 4

The Parameters Used in the Circular Clusterings

Number of good clusters to keep 10

Diameter of the mask 20

Resolution of the mask 4

If the diameter of the area that the artillery is to impact were stochastic, the mask could

use values other than unity and zero. Points near the center of the mask would have higher

weights, and points away from the center would have lower weights. This idea was not

implemented.

In the appendix, some of the data sets have circular clusterings calculated. Although the

circular clustering algorithm was run on all 59 data sets, results are reported only for the small

sets. In the large data sets, it is impossible to determine if the algorithm is running correctly by

inspection. This is particularly true since multiple units may be positioned at a single pixel.

Since the images are not useful for evaluating the success of this algorithm, they are not included

in this report.

RESULTS AND CONCLUSIONS

This report describes two algorithms for clustering data. The first algorithm can produce

both linear and on-line clusters by grouping data points together into small clusters. These small

clusters are then classified and grouped into larger clusters. An advantage of the two-level

scheme is that a "quick and dirty" initial grouping limits the number of clusters that must be

considered for a more rigorous hierarchical grouping. The second algorithm describes a clustering
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method for circular clusters. The method produces results that are identical to using a circular

template mask but offers improved efficiency.

Both methods have been run on all data sets provided. The clustering results are

complete and reasonable. Evaluating a clustering algorithm in objective terms is always

problematic since there is no single objective measure of what is a good clustering. Methods such

as determining the amount of clustering on random data are not applicable in this domain since it

is known that the data are not random. Subjective visual inspection of the processing results, as

shown in the appendix, shows that the algorithms are both working well.

Variation of parameters permits different clustering policies to be enforced. A

conservative policy would favor small thresholds. This would be appropriate in a case when an

extraneous clustering is potentially problematic. If it is more important to improve the efficiency

and encourage bigger clusters, the parameters can be adjusted to this policy. The policy enforced

in the reported results is not conservative.

Table 5 presents some examples of running times for the linear and on-line clustering

algorithms on a SparcStation LX workstation which runs at 59.1 MIPS. Other relevant
performance parameters are 4.6 MFLOPS, 26.4 SPECint92, and 21.0 SPECfp92. Table 6 gives

the run time on the same workstation with the same performance parameters for the circular

clustering algorithm. Before these times were calculated, the graphical user interfaces (GUIs)
were disabled so that only the time to read the data and find clusters was recorded. Since data are

being read from hard disk, the times provided may be larger than those that will be achieved when

the data reside in memory. Although it is impossible to tell what the exact execution speed of the

algorithms will be when they are integrated into TAFSM on different hardware, they are
currently running quickly. The times for the circular clustering algorithm reflect finding the ten

best clusters. There is a time savings if only one good cluster is sought.

Table 7 gives a list of the parameters used to cluster all the sample data sets. A wide
range of parameter values could be used with only small differences in outcome. These parameter

values can be fine tuned using the X-windows graphical user interface and command line

arguments.
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Table 5

Combined Execution Time for the Linear and On-line Clustering Algorithms

Data set No. of points Time in seconds

0002 46 --

0013 1079 2

0030 1253 2

0058 1977 4

0020 2179 5

0022 2589 6

Note. Times indicated by a (-) in the table are less than 1 second. Time reported is the elapsed time on the clock,
not the actual central processing unit (CPU) time used, which is too small to measure for most of the clusterings.

Table 6

Execution Time for the Circular Clustering Algorithm

Data set No. of points Time in seconds

0002 46 --

0013 1079 2

0030 1253 2

0058 1977 3

0020 2179 3

0022 2589 4

Note. Times indicated by a (-) in the table are less than 1 second. Time reported is the elapsed time on the clock,
not the actual CPU time used, which is too small to measure for most of the clusterings.
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Table 7

The Parameters Used in the Algorithm for Linear and On-line Clustering

Initial linear and on-line clustering parameters

Threshold on maximum distance for D 8 units
Threshold on velocity differences 1.0 unit
Threshold on directional differences 0.5 radian
Threshold on ratio of eigenvalues 4

Second level linear and on-line clustering parameters

Threshold on distance parallel to the first eigenvector 100 units
Threshold on distance parallel to the second eigenvector 8 units
Threshold on velocity differences 1.0 unit
Threshold on directional differences 0.5 radian
Threshold on density .05

Circular clustering parameters

Number of good clusters to keep 10
Diameter of the mask 20
Resolution of the mask 4
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EXPERIMENTAL RESULTS
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EXPERIMENTAL RESULTS

This appendix contains printouts of the initial data, intermediate results, and final

clusterings for all 59 data sets supplied for the linear and on-line clustering methodologies.

Following some data sets are the circular clustering results.
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Figure A-I. Input data from data set 1.
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Figure A-2. Initial clusters from data set 1.
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Figure A-3. Linear and online clusters from data set I.
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Figure A-4. Input data from data set 2.
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Figure A-5. Initial clusters from data set 2.
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Figure A-6. Linear and online clusters from data set 2.

34



24400 -

01(>
a-

0~..o

24508

24616

24724

24832

24940

25048

25156

Figure A-7. Circular clustering from data set 2.
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Figure A-8. Input data from data set 3.
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Figure A-9. Initial clusters from data set 3.
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Figure A- 10. Linear and online clusters from data set 3.
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Figure A- I. Circular clustering from data set 3.
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Figure A-12. Input data from data set 4.
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Figure A-13. Initial clusters from data set 4.
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Figure A-14. Linear and online clusters from data set 4.
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Figure A-1 5. Circular clustering from data set 4.
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Figure A-16. Input data from data set 5.
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Figure A-17. Initial clusters from data set 5.
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Figure A- 18. Linear and online clusters from data set 5.
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Figure A-19. Circular clustering from data set 5.
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Figure A-20. Input data from data set 6.
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Figure A-2 1. Initial clusters from data set 6.
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Figure A-22. Linear and online clusters from data set 6.
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Figure A-23. Circular clustering from data set 6..
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Figure A-24. Input data from data set 7.
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Figure A-25. Initial clusters from data set 7.
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Figure A-26. Linear and online clusters from data set 7.
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Figure A-27. Circular clustering from data set 7.
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Figure A-28. Input data from data set 8.
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Figure A-29. Initial clusters from data set 8.
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Figure A-30. Linear and online clusters from data set 8.
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Figure A-3 1. Input data from data set 9.
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Figure A-32. Initial clusters from data set 9.
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Figure A-33. Linear and online clusters from data set 9.
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Figure A-34. Input data from data set 10.
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Figure A-36. Linear and online clusters from data set 10.
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Figure A-37. Input data from data set 11.
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Figure A-38. Initial clusters from data set 11.
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Figure A-39. Linear and online clusters from data set I1.
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Figure A-40. Input data from data set 12.
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Figure A-41. Initial clusters from data set 12.

69



* *9; 1434,•lI 14 *4(,', 1
4 VCj~l 14 ,•!4:! 14 ";- 14I2 4:,,.. 4:, 1 1 l '

4 34.1ri4 4A' 4 3'A 4 j 4 ~,

n0

2345)

232977

.N-

N" .-N•. ,,•

24236

24495

24754

25013

25272

Figure A-42. Linear and online clusters from data set 12.
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Figure A--43. Input data from data set 13.
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Figure A-44. Initial clusters from data set 13.
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Figure A-45. Linear and online clusters from data set 13.
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Figure A-46. Input data from data set 14.
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Figure A-47. Initial clusters from data set 14.
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Figure A-48. Linear and online clusters from data set 14.
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Figure A-49. Input data from data set 15.
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Figure A-50. Initial clusters from data set 15.
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Figure A-5 1. Linear and online clusters from data set 15.
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Figure A-52. Input data from data set 16.
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Figure A-53. Initial clusters from data set 16.
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Figure A-54. Linear and online clusters from data set 16.
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Figure A-55. Input data from data set 17.
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Figure A-56. Initial clusters from data set 17.
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Figure A-57. Linear and online clusters from data set 17.
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Figure A-58. Input data from data set 18.

86



42192 142229 142266 142303 142340 142377 142414 142451 142488 142525

21510

21906

22302

% S

22698 "
• • %o

. %' t

2 3 0 94 J . %" • ' 0 "

23490 • .%."

• .. "% 0&.

23886 .

24282 " * 9"

24678 i4b * "

25074

Figure A-59. Initial clusters from data set 18.
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Figure A-60. Linear and online clusters from data set 18.
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Figure A-61. Input data from data set 19.
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Figure A-62. Initial clusters from data set 19.
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Figure A-63. Linear and online clusters from data set 19.
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Figure A-64. Input data from data set 20.
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Figure A-65. Initial clusters from data set 20.

93



4 1

/1'42 0',

4 97

22404 k"
2 192 a

.*o

24132 

.0

24564 
fA * "

24996

Figure A-66. Linear and online clusters from data set 20.
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Figure A-67 . Input data from data set 21.
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Figure A-68. Initial clusters from data set 2 1.
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Figure A-69. Linear and online clusters from data set 21.
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Figure A-70. Input data from data set 22.
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Figure A-7 1. Initial clusters from data set 22.
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Figure A-72. Linear and online clusters from data set 22.
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Figure A-73. Input data from data set 23.
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Figure A-74. Initial clusters from data set 23.

102



4|1 4 ý,4 T 4 1 4 #,,/ L 4 
1

M i 4 1 7 7,

217 14 a.:..:" '

- ,,• ,.% . ,w
Z2 20

2262' I

-Av

.. %

S- .

235•',2 '

* . o '.

23934 S "

24366

24798

25230

Figure A-75. Linear and online clusters from data set 23.
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Figure A-76. Input data from data set 24.
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Figuare A-77. Initial clusters from data set 24.
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Figure A-78. Linear and online clusters from data set 24.
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Figure A-79. Input data from data set 25.
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Figure A-80. Initial clusters from data set 25.
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Figure A-8 1. Linear and online clusters from data set 25.
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Figure A-82. Input data from data set 26.
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Figure A-83. Initial clusters from data set 26.
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Figure A-84. Linear and online clusters from data set 26.
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Figure A-85. Input data from data set 27.
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Figure A-86. Initial clusters from data set 27.
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Figure A-87. Linear and online clusters from data set 27.
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Figure A-88. Input data from data set 28.
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Figure A-89. Initial clusters from data set 28.
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Figure A-90. Linear and online clusters from data set 28.
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Figure A-91. Input data from data set 29.
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Figure A-92. Initial clusters from data set 29.
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Figure A-93. Linear and online clusters from data set 29.
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Figure A-94. Input data from data set 30.
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Figure A-95. Initial clusters from data set 30.
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Figure A-96. Linear and online clusters from data set 30.
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Figure A-97. Input data from data set 31.
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Figure A-98. Initial clusters from data set 31.
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Figure A-99. Linear and online clusters from data set 3 1.
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Figure A-100. Input data from data set 32.
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Figure A-101. Initial clusters from data set 32.
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Figure A-102. Linear and online clusters from data set 32.
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Figure A-103. Input data from data set 33.
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Figure A-104. Initial clusters from data set 33.
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Figure A-105. Linear and online clusters from data set 33.
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Figure A- 106. Input data from data set 34.
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Figure A-107. Initial clusters from data set 34.
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Figure A-108. Linear and online clusters from data set 34.
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Figure A-109. Input data from data set 35.
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Figure A-1 10. Initial clusters from data set 35.
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Figure A-i 11. Linear and online clusters from data set 35.
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Figure A-i 13. Initial clusters from data set 36.
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Figure A-1 14. Linear and online clusters from data set 36.
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Figure A- 115. Input data from data set 37.
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Figure A- 116. Initial clusters from data set 37.
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Figure A-i 117. Linear and online clusters from data set 37.
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Figure A-1 18. Input data from data set 38.
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Figure A-1l19. Initial:clusters from data set 38.
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Figure A-120. Linear and online clusters from data set 38.
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Figure A-121. Input data from data set 39.
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Figure A-122. Initial clusters from data set 39.
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Figure A-123. Linear and online clusters from data set 39.
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Figure A-124. Input data from data set 40.
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Figure A- 125. Initial clusters from data set 40.

153



\ 2

23640

2~4000 42,

* S
2292)0 * * ,

* "
23220 • /

23640 "" ". ."

:2 4 0 0 0 I " "

24360 *

24720

Figure A-126. Linear and online clusters from data set 40.
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Figure A-127. Input data from data set 41.
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Figure A-128. Initial clusters from data set 41.
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Figure A-129. Linear and online clusters from data set 4 1.
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Figure A-130. Input data from data set 42.
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Figure A-131. Initial clusters from data set 42.
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Figure A- 132. Linear and online clusters from data set 42.
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Figure A-133. Input data from data set 43.
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Figure A-134. Initial clusters from data set 43.
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Figure A-I 135. Linear and online clusters from data set 43.
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Figure A-136. Input data from data set 44.
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Figure A- 137. Initial clusters from data set 44.
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Figure A-138. Linear and online clusters from data set 44.
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Figure A-139. Input data from data set 45.
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Figure A-140. Initial clusters from data set 45.
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Figure A-141. Linear and online clusters from data set 45.
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Figure A-142. Circular clustering from data set 45.
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Figure A-143. Input data from data set 46.
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Figure A-144. Initial clusters from data set 46.
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Figure A- 145. Linear and online clusters from data set 46.
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Figure A-146. Circular clustering from data set 46.
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Figure A- 147. Input data from data set 47.
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Figure A-148. Initial clusters from data set 47.
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Figure A-149. Linear and online clusters from data set 47.
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Figure A-150. Circular clustering from data set 47.
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Figure A-151. Input data from data set 48.
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Figure A- 152. Initial clusters from data set 48. "
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Figure A- 153. Linear and online clusters from data set 48.
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Figure A- 154. Circular clustering from data set 48. "
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Figure A-155. Input data from data set 49.
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Figure A-156. Initial clusters from data set 49.
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Figure A-157. Linear and online clusters from data set 49.
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Figure A-158. Circular clustering from data set 49.
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Figure A-159. Input data from data set 50.
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Figure A-160. Initial clusters from data set 50.
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Figure A-161. Linear and online clusters from data set 50.
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Figure A- 162. Circular clustering from data set 50.
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Figure A-163. Input data from data set 51.
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Figure A-164. Initial clusters from data set 51.
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Figure A- 165. Linear and online clusters from data set 51.
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Figure A-166. Input data from data set 52.
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Figure A-167. Initial clusters from data set 52.
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Figure A-168. Linear and online clusters from data set 52.
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Figure A-169. Input data from data set 53.
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Figure A-170. Initial clusters from data set 53.
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Figure A-171. Linear and online clusters from data set 53.
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Figure A-172. Input data from data set 54.
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Figure A-173. Initial clusters from data set 54.
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Figure A- 174. Linear and online clusters from data set 54.
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Figure A-175. Input data from data set 55.
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Figure A-176. Initial clusters from data set 55.
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Figure A-177. Linear and online clusters from data set 55.
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Figure A-178. Input data from data set 56.
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Figure A-179. Initial clusters from data set 56.
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Figure A- 180. Linear and online clusters from data set 56.
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Figure A-181. Input data from data set 57.
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Figure A-182. Initial clusters from data set 57.
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Figure A-183. Linear and online clusters from data set 57.
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Figure A-184. Input data from data set 58.
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Figure A-185. Initial clusters from data set 58.
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Figure A-186. Linear and online clusters from data set 58.
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Figure A-187. Input data from data set 59.
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Figure A-188. Initial clusters from data set 59.
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Figure A- 189. Linear and online clusters from data set 59.
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Figure A- 190. Circular clustering from data set 59.
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DR PAUL R MCCRIGHT
INDUSTRIAL ENGINEERING DEPARTMENT 1 JON TATRO
KANSAS STATE UNIVERSITY HUMAN FACTORS SYSTEM DESIGN
MANHATTA KS 66502 BELL HELICOPTER TEXTRON INC

PO BOX 482 MAIL STOP 6
DR MM AYOUB DIRECTOR FT WORTH TX 76101
INSTITUTE FOR ERGONOMICS RESEARCH
TEXAS TECH UNIVERSITY
LUBBOCK TX 79409
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DAVID ALDEN I SOUTHCOM WASHINGTON FIELD OFC
HUGHES SIMULATION SYSTEMS INC 1919 SOUTH EADS ST SUITE L09
5301 E RIVER RD AMC FAST SCIENCE ADVISER
MINNEAPOLIS MN 55421-1024 ARLINGTON VA 22202

OASD (FM&P) 1 HQ US SPECIAL OPERATIONS COMMAND
WASHINGTON DC 20301-4000 AMC FAST SCIENCE ADVISER

ATTN SOSD
COMMANDER MACDILL AIR FORCE BASE
US ARMY MATERIEL COMMAND TAMPA FL 33608-0442
ATTN AMCDE AQ
5001 EISENHOWER AVENUE 1 HQ US ARMY EUROPE AND 7TH ARMY
ALEXANDRIA VA 22333 ATTN AEAGX SA

OFFICE OF THE SCIENCE ADVISER
COMMANDER APO AE 09014
MARINE CORPS SYSTEMS COMMAND
ATTN CBGT 1 COMMANDER
QUANTICO VA 22134-5080 HQ 21ST THEATER ARMY AREA COMMAND

AMC FAST SCIENCE ADVISER
DIRECTOR AMC-FIELD ASSISTANCE ATTN AERSA

IN SCIENCE & TECHNOLOGY APO AE 09263
ATTN AMC-FAST (RICHARD FRANSEEN)
FT BELVOIR VA 22060-5606 1 COMMANDER

HEADQUARTERS USEUCOM
COMMANDER AMC FAST SCIENCE ADVISER
US ARMY FORCES COMMAND UNIT 30400 BOX 138
ATTN FCDJ SA BLDG 600 APO AE 09128
AMC FAST SCIENCE ADVISER
FT MCPHERSON GA 30330-6000 1 HQ V CORPS

COMMAND GROUP UNIT #25202
COMMANDER AMC FAST SCIENCE ADVISER
I CORPS AND FORT LEWIS ATTN AETV SA
AMC FAST SCIENCE ADVISER APO AE 09079-0700
ATTN AFZH CSS
FORT LEWIS WA 98433-5000 1 HQ 7TH ARMY TRAINING COMMAND

UNIT #28130
HQ III CORPS & FORT HOOD AMC FAST SCIENCE ADVISER
OFFICE OF THE SCIENCE ADVISER ATTN AETT SA
ATTN AFZF CS SA APO AE 09114
FORT HOOD TX 76544-5056

1 COMMANDER
COMMANDER HHC SOUTHERN EUROPEAN TASK FORCE
U.S. ARMY NATIONAL TRAINING CENTER ATTN AESE SA BUILDING 98
AMC FAST SCIENCE ADVISER AMC FAST SCIENCE ADVISER
ATTN AMXLA SA APO AE 09630
FORT IRWIN CA 92310

1 COMMANDER
COMMANDER US ARMY PACIFIC
HQ XVIII ABN CORPS & FORT BRAGG AMC FAST SCIENCE ADVISER
OFFICE OF THE SCI ADV BLDG 1-1621 ATTN APSA
ATTN AFZA GD FAST FT SHAFTER HI 96858-5L00
FORT BRAGG NC 28307-5000
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COMMANDER ABERDEEN PROVING GROUND
US ARMY JAPAN/IX CORPS
UNIT 45005 ATTN APAJ SA 5 US ARMY RESEARCH LABORATORY
AMC FAST SCIENCE ADVISERS ATTN AMSRL OP AP L (TECH LIB)
APO AP 96343-0054 BLDG 305

AMC FAST SCIENCE ADVISERS 1 ARL LIBRARY
PCS #303 BOX 45 CS-SO BLDG 459
APO AP 96204-0045

1 ARL SLAD
COMMANDER ALASKAN COMMAND ATTN AMSRL BS (DR JT KLOPCIC)
ATTN SCIENCE ADVISOR (MR GRILLS) BLDG 328 APG-AA
6-900 9TH ST STE 110
ELMENDORF AFB ALASKA 99506 1 COMMANDER

CHEMICAL BIOLOGICAL AND
CDR & DIR USAE WATERWAYS DEFENSE COMMAND
EXPERIMENTAL STA ATTN AMSCB CI APG-EA
ATrN CEWES IM MI R (AS CLARK
CD DEPT #1153) 1 USATECOM

3909 HALLS FERRY ROAD RYAN BUILDING
VICKSBURG MS 39180-6199 APG-AA

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL OP SD TP (TECH PUB)
ADELPHI MD 20783-1145

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL OP SD TA (REC MGMT)
ADELPHI MD 20783-1145

DR SEHCHANG HAH
DEPT OF BEHAVIORAL SCIENCES &

LEADERSHIP
BUILDING 601 ROOM 281
US MILITARY ACADEMY
WEST POINT NEW YORK 10996-1784

US ARMY RESEARCH INSTITUTE
ATTN PERI IK (DOROTHY FINLEY)
2423 MORANDE STREET
FORT KNOX KY 40121-5620

5 CHIEF ARL HRED USAFAS FIELD
ELEMENT

ATTN AMSRL HR MF (L PIERCE)
BLDG 3040 ROOM 220
FORT SILL OK 73503-5600

5 DEBORAH TRYTTEN
SCHOOL OF COMPUTER SCIENCE
UNIVERSITY OF OKLAHOMA
NORMAN OK 73069
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